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Abstract In this paper we consider a Walrasian pure exchange economy with utility func-
tion which is a particular case of a general economic equilibrium problem, without produc-
tion. We assume that each agent is endowed with at least of a commodity, his preferences are
expressed by an utility function and it prevails a competitive behaviour: each agent regards
the prices payed and received as independent of his own choices. The Walrasian equilibrium
can be characterized as a solution to a quasi-variational inequality. By using this variational
approach, our goal is to prove an existence result of equilibrium solutions.

Keywords Competitive equilibrium · Variational and quasi-variational inequality ·
Mosco’s convergence

1 Introduction

The full recognition of the general equilibrium concept can be attributed unmistakably to
Leon Walras [24]. Taking into account more aspects of a real economy, he obtains a system
of equations, which he calls the “equations of exchange”: a solution to this system is an
equilibrium for an exchange economy. The first rigorous result on the existence of general
equilibrium is due to a series of papers by Wald [23]. Wald’s papers were of forbidding math-
ematical depth, not only in the use of sophisticated tools, but also in the complexity of the
argument. A help, finally, came from the development of a related line of research, as the Von
Neumann’s theory of games. He deduced [20], an existence theorem from a generalization
of the Brouwer’s fixed point theorem. With these foundations, plus the influence of the rapid
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development of linear programming on both the mathematical and the economic sides, it was
perceived independently by a number of authors that existence theorems of greater simplicity
and generality than Wald’s ones were now possible. Some of these are McKenzie [15], Arrow
and Debreu [1], Gale [10] and Nikaido [21].

Arrow and Debreu, in Ref. [1], by applying the fixed point theory, give an existence result
when the data are convex, requiring that each agent starts out with a tradable quantity of
every possible goods (that is the survivability assumption).
An alternative approach for the study of general economic equilibrium is performed by the
variational inequality formulation. There are several papers that have been devoted to the
study of this equilibrium by using the variational theory (e.g. see Ref. [3,11,12,18]); in par-
ticular, in Ref. [16] we can find a lot of references about the state of art of this topic. This
theory arose in the seventies of the last century as an innovative and effective method to
solve several equilibrium problems originated from mathematical physics as the Signorini’s
problem, the obstacle problem, the elastic-plastic torsion problem. It is still an open problem
to decide who must be considered the founder between Fichera [9] and Stampacchia [22],
who first dealt with variational inequality (e.g. see Ref. [14] for a survey).

In Ref. [3] Border elaborates a variational inequality formulation of a particular Walrasian
price equilibrium problem, without any utility function. For this model, Nagurney in the book
[18] (see e.g. also its complete bibliography), Nagurney and Zhao in Ref. [19] and Dafermos
and Zhao in Ref. [6] use the variational approach for the study, analysis and computation of
the equilibrium. In [11,12], Jofre, Rockafellar and Wets show how, introducing the Lagrange
multipliers, the general economic equilibrium can be represented by a variational inequal-
ity problem. They, by means of truncation arguments, are able to establish the existence
of a “virtual equilibrium”, approximated by a classical Walrasian equilibrium. In order to
achieve this existence result they assume the “strong survivability”: every agent have, from
the beginning, a positive quantity of every goods (see e.g. (A6) p. 13 [12]).

In this paper, we consider a competitive economic equilibrium problem and we study a
pure exchange economy with l different goods and n agents. We suppose that the following
survivability assumption holds: each agent is endowed with a positive quantity of at least
one commodity [see e.g. Sect. 2 assumption (U5)]. In this market the agents’ preferences are
expressed by an utility function and it prevails a competitive behaviour, that is each agent
regards the prices payed and received as independent of his own choices. Mathematically, we
formulate the notion of this economic equilibrium in terms of excess demand function and
of maximization of utility function related to each agent. Thanks to the given assumptions
on the utility function we are able to guarantee that this economy is regulated by Walras’
law. This equilibrium problem can be reformulated in terms of a quasi-variational inequality
associated to the excess demand function and to the gradient of the utility function (for a
bibliography of quasi-variational theory, see e.g. [4,8]). Our goal is to prove, by means of
the set convergence in the Mosco’s sense, an existence result related to the solutions of our
quasi-variational inequality, that not satisfies the standard assumptions of usual existence
theorems.

2 Walrasian pure exchange model

We consider a marketplace consisting of l different goods indexed by j = 1, . . . , l and n
agents indexed by a = 1, . . . , n. Each agent a = 1, 2, . . . , n has an initial endowment vector:

ea = (e 1
a, e 2

a, . . . , e l
a) ∈ Rl+.
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We denote by x j
a the consumption by agent a of good j and represent with:

xa = (x 1
a, x 2

a, . . . , x l
a) ∈ Rl+

the consumption choice vector and with:

x ≡ (x1, x2, . . . , xn)T ∈ Rnl+
the consumption of market. In this economy there is only pure exchange, without production,
that is the only activity that the agents can perform is to consume and/or trade their commod-
ities with each other agent. We presume that the “law of one price” is fulfilled, that is, traders
examine opportunities to the extent that each goods is sold and purchased at only one price.
Each goods j, j = 1, 2, . . . , l associates with it a real positive number p j representing its
price and we denote by

p = (p 1, p 2, . . . , p l) ∈ Rl+
the price vector. We also presume a competitive behaviour, that is, agents do not perceive that
they can have any influence over these market prices. Competitive equilibrium price vector,
which we denote by p, is the price at which every agent can simultaneously satisfy his desire
to trade. As standard in economic theory, the choice by the consumer from a given set of
alternative consumption vectors is supposed to be made in accordance with a preference scale
for which there is an utility function:

ua : Rl+ → R

Rl+ � xa → ua(xa) ∈ R.

In this market, the objective of each of the agents is to maximize their utility by performing
pure exchanges of the given goods. There are natural constraints that the consumers must
satisfy: the wealth of a consumer is his initial endowment, and the total amount of goods that
a consumer can acquire or buy is at most equal to his initial wealth, i.e. the goods that the
consumer sells off. This means that, for all a = 1, . . . , n and for all p ∈ P:

ua(xa) = max
xa∈Ma(p)

ua(xa), (1)

where

Ma(p) =
⎧
⎨

⎩
xa ∈ Rl : x j

a ≥ 0 ∀ j = 1, . . . , l,
l∑

j=1

p j (x j
a − e j

a) ≤ 0

⎫
⎬

⎭
, ∀a = 1, . . . , n,

and

p ∈ P =
⎧
⎨

⎩
p ∈ Rl+ :

l∑

j=1

p j = 1

⎫
⎬

⎭
.

For each a = 1, .., n and p ∈ P, Ma(p) is a closed and convex set of Rl+.
We define a particular aggregate excess demand function:

z j : Rnl+ → R, j = 1, 2, . . . , l

x → z j (x) =
n∑

a=1

(x j
a − e j

a),
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where x j
a − e j

a is the individual excess demand by the agent a for the goods j . Grouping
this components in the vector we introduce:

z(x) = (z1(x), z2(x), . . . , zl(x)) ∈ Rl .

Furthermore, for all a = 1, . . . , n, we assume that:

(U1) ua is strictly concave,
(U2) ua ∈ C1(Rl+) in the usual sense,

(U3) ∀xa ∈ Ma(p) : ∇ua(xa) 	= 0, ∀p ∈ P and ∀xa ∈ ∂ Ma(p) : ∂ua(xa)

∂xs
a

> 0, when

xs
a = 0, ∀p ∈ P ,

(U4) lim||xa ||→+∞,
xa∈Ma(p)

ua(xa) = −∞,

(U5) Each agent is endowed with a positive quantity of at least one commodity

∀ a = 1, . . . , n ∃ j : e j
a > 0,

and for every goods j there exists at least an agent a such that e j
a > 0.

In our assumptions, for all a = 1, . . . , n, the maximization problem (1) has a unique
solution for each p ∈ P , then it arises a function xa(p) from P to Rl+. So, we can define
z(x(p)) : P → R and in the following we will continue to denote with z(p) the composite
function z(p) = z(x(p)).

Then the competitive equilibrium condition of a pure exchange economic market takes
the following form:

Definition 1 Let p ∈ P and x(p) ∈ M(p) = �n
a=1 Ma(p). The pair (p, x(p)) ∈ P × M(p)

is a competitive equilibrium if and only if:

for all a = 1, . . . , n

ua(xa(p)) = max
xa∈Ma(p)

ua(xa), (2)

and for all j = 1, 2, . . . , l:

z j (x(p)) =
n∑

a=1

(x j
a(p) − e j

a) ≤ 0. (3)

The vector p is the competitive equilibrium price.
For sake of brevity in the sequel we will write x instead of x(p).

In the work [7] we have proved that, in our assumptions, the market is regulated by Walras’
law:

l∑

j=1

p j (x j
a(p) − e j

a) = 0 ∀p ∈ P, ∀a = 1, . . . , n, (4)

hence it is possible reformulate the equilibrium in the following way:
A competitive equilibrium of a pure exchange economic market with utility function con-

sists of a competitive equilibrium price vector p ∈ P and a consumption vector x ∈ Rnl+
such that:
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(a) for all a = 1, . . . , n, xa is a solution to maximization problem (2) and

l∑

j=1

p j (x j
a − e j

a) = 0. (5)

(b) For all j = 1, . . . , l:

n∑

a=1

(x j
a − e j

a)

{≤ 0 i f p j = 0
= 0 i f p j > 0.

(6)

Problem (2) states that the consumption choice vector xa of the agent a must be such that
his utility ua(xa) is maximized, and the choice is subjected to the constraint that the amount
that the agent a pays for acquiring the goods xa,

∑l
j=1 p j x j

a , is at most the amount that the

agent receives for his initial endowment,
∑l

j=1 p j e j
a . Condition (5) states that the amount

that the agent a pays for acquiring the goods that maximized his utility:
∑l

j=1 p j x j
a , is equal

to the amount that the agent received for his initial endowment:
∑l

j=1 p j e j
a . Condition (6)

states that the market is usually considered to be in equilibrium when, for a commodity, the
supply equals the demand; but, there exists the possibility that at a zero price, the supply will
exceed the demand. This is the classical case of the free goods.

In the work [7] we have proved that the competitive equilibrium for a pure exchange
economic market is characterized as a solution to the quasi-variational inequality:

“Find (p, x) ∈ P × M(p) such that:
〈

n∑

a=1

(xa − ea), p − p

〉

l

+
n∑

a=1

〈∇ua(xa), xa − xa〉l ≤ 0 ∀ (p, x) ∈ P × M(p)”, (7)

in fact the following result holds:

Theorem 1 The pair (p, x) ∈ P × M(p) is a competitive equilibrium of a pure ex-
change economic market with utility function if and only if is a solution to quasi-variational
inequality (7).

Proof See e.g. [7]. ��

3 Existence theorem

In this section we are concerned with the problem of the existence of the solutions to quasi-
variational inequality (7).

We prove this result assuming that the operators −∇ua(xa) are strongly monotone for all
a = 1, . . . , n and for all p ∈ P:

〈−∇ua(xa) + ∇ua(ya), xa − ya〉 ≥ ν||xa − ya ||2 ∀xa, ya ∈ Ma(p). (8)

We observe that the quasi-variational inequality (7) can be studied in the following way.
First, we consider for all p ∈ P and for all a ∈ 1, . . . , n the unique solution xa(p) to the
variational inequality:

“Find xa(p) ∈ Ma(p) such that:

〈−∇ua(xa(p)), xa − xa(p)〉l ≥ 0, ∀xa ∈ Ma(p);” (9)
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Then we solve the variational inequality:

“Find p ∈ P such that:
〈

−
n∑

a=1

(xa − ea), p − p

〉

l

≥ 0, ∀p ∈ P .” (10)

The pair (p, x) clearly solve the quasi-variational inequality (7). We observe that from (8),
because the operator results strongly monotone, the variational inequality (9) admits a unique
solution. For the variational inequality (10), being P closed, convex and bounded, we have:

Theorem 2 ([13]) If xa(p) is a continuous function, then the variational inequality problem
(10) admits a solution p ∈ P.

Then our goal is to show that xa(p) is continuous on P . In order to achieve the continu-
ity result we need to recall the concept of set convergence in the sense of Mosco (see also
e.g. [2]).

Definition 2 ([17]) Let (V, ‖ · ‖) be an Hilbert space K ⊂ V a closed, nonempty, convex set.
A sequence of nonempty, closed, convex sets Kn converges to K as n → +∞, i.e. Kn → K,

if and only if

(M1) for any H ∈ K, there exists a sequence {Hn}n∈N strongly converging to H in V such
that Hn lies in Kn for all n,

(M2) for any {Hn}n∈N weakly converging to H in V , such that Hn lies in Kn for all n, then
the weak limit H belongs to K.

In our assumption we have the following result:

Lemma 1 Let p ∈ P be. Then, for all sequence {pn}n∈N ⊂ P converging to p, the sequence
of sets Ma(pn) converges to Ma(p) in Mosco’s sense.

Proof For readers’ convenience we report the proof of the Mosco’s convergence of the
sequence {Ma(pn)} to Ma(p), which first we proved in Ref. [7].

Let p ∈ P fix and let {pn}n∈N ⊂ P be a sequence, such that pn → p ∈ P. First we prove
that Ma(pn) → Ma(p) in Mosco’s sense, i.e. it is enough to show that (M1) and (M2) hold.
For the first one, let xa(p) ∈ Ma(p) be fixed and let us pose:

I = { j : x j
a (p) > 0} ⊆ {1, 2, . . . , l}.

We consider the following sequence:

xa(pn) = xa(p) − ηn ∀n ∈ N, (11)

in other words:

x j
a(pn) = x j

a(p) − η
j
n ∀ j = 1, 2, . . . , l, ∀n ∈ N,

where the sequence {η j
n} is such that:

{
η

j
n = 0, j /∈ I

η
j
n = ηn, j ∈ I,
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with ηn converging to zero and, if
∑

j∈I

p j
n > 0, satisfying

∑l
j=1(p j

n − p j )(x j
a(p) − e j

a)
∑

j∈I p j
n

< ηn < min
j∈I

{x j
a(p)}.

Let us verify that xa(pn) ∈ Ma(pn) ∀n ∈ N.

(a) If
∑

j∈I

p j
n = 0, we observe that, because p j

n ≥ 0, we have p j
n = 0 for all j ∈ I . Then, it

results:

l∑

j=1

p j
n (x j

a(pn) − e j
a) =

∑

j∈I

p j
n(x j

a(pn) − e j
a) +

∑

j /∈I

p j
n(x j

a(pn) − e j
a)

=
∑

j /∈I

p j
n(−e j

a) ≤ 0.

(b) If
∑

j∈I

p j
n > 0, it results:

l∑

j=1

p j
n (x j

a(pn) − e j
a) =

l∑

j=1

p j
n(x j

a(p) − η
j
n − e j

a)

=
l∑

j=1

p j
n(x j

a(p) − e j
a) −

l∑

j=1

p j
nη

j
n

=
l∑

j=1

p j (x j
a(p) − e j

a) +
l∑

j=1

(p j
n − p j )(x j

a(p) − e j
a)

−
∑

j∈I

p j
nη

j
n −

∑

j /∈I

p j
nη

j
n

=
l∑

j=1

p j (x j
a(p) − e j

a) +
l∑

j=1

(p j
n − p j )(x j

a(p) − e j
a)

−ηn

∑

j∈I

p j
n . (12)

Owing to xa(p) ∈ Ma(p) :
l∑

j=1

p j (x j
a(p) − e j

a) ≤ 0,

and by choosing of ηn :
l∑

j=1

(p j
n − p j )(x j

a(p) − e j
a) < ηn

∑

j∈I

p j
n .
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Then, from (12), we obtain:

l∑

j=1

p j
n(x j

a(pn) − e j
a) < ηn

∑

j∈I

p j
n − ηn

∑

j∈I

p j
n = 0,

being xa(pn) ≥ 0 ∀n ∈ N.

Then, xa(pn) ∈ Ma(pn)∀n ∈ N. Moreover, we have

lim
n→+∞ xa(pn) = lim

n→+∞ xa(p) − ηn = xa(p).

Hence the proof of the first condition (M1) is just obtained. For the second one, let {xa(pn)}n∈N

a fixed sequence, with xa(pn) ∈ Ma(pn) ∀n ∈ N. such that xa(pn) → xa(p). Because

l∑

j=1

p j
n(x j

a(pn) − e j
a) ≤ 0, xa(pn) ≥ 0 ∀n ∈ N

we get

l∑

j=1

p j (x j
a(p) − e j

a) ≤ 0, xa(p) ≥ 0.

Then, xa(p) ∈ Ma(p), so the second condition (M2) is proved. Hence, we conclude that
Ma(pn) → Ma(p) in Mosco’s sense when pn → p ∈ P . ��

In the proof of the continuity result of the solution xa(p) on P we will use the following
Lemma (e. g. see [22], Lemma 2.2), regarding the Minty variational inequality:

Lemma 2 Let −∇ua(xa) be satisfying the condition (8); then variational inequality (9) is
equivalent to:

〈−∇ua(xa), xa − xa(p)〉l ≥ 0 ∀xa ∈ Ma(p). (13)

Now we can prove the following:

Theorem 3 Let −∇ua(xa) be a continuous operators verifying conditions (8). Then the
unique solution xa(p) ∈ Ma(p) to variational inequality (9) is continuous on P.

Proof Let xa be a solution to the variational inequality (9), xa : P → Rl+.
Let p ∈ P fix and let {pn}n∈N ⊂ P be a sequence, such that pn → p ∈ P . For all n ∈ N we
consider the variational inequality:

〈−∇ua(xa(pn)), xa − xa(pn)〉l ≥ 0, ∀xa ∈ Ma(pn).” (14)

We must show that the sequence of the unique solutions of (14) converges to solution of
the problem (9); namely:

lim
n→+∞ xa(pn) = x(p). (15)

From the Lemma (1) the sequence {Ma(pn)} converges to Ma(p) in the Mosco’s sense;
than from the condition (M1), there exists a sequence {ya(pn)} such that:

ya(pn) ∈ Ma(pn)∀n ∈ N, lim
n→+∞ ya(pn) = xa(p). (16)
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Since ua(xa) ∈ C1(Rl+), we have:

lim
n→+∞(−∇ua(ya(pn))) = −∇ua(xa(p)). (17)

In (14), for all n ∈ N, choosing xa(pn) = ya(pn), it results:

〈−∇ua(xa(pn)), ya(pn) − xa(pn)〉l ≥ 0. (18)

By the condition (B), with xa = xa(pn) and ya = ya(pn):

〈−∇ua(xa(pn)) + ∇ua(ya(pn)), xa(pn) − ya(pn)〉 ≥ ν||xa(pn) − ya(pn)||2;
From the last inequality and from (18), we have:

ν||xa(pn) − ya(pn)||2 ≤ 〈−∇ua(xa(pn)) + ∇ua(ya(pn)), xa(pn) − ya(pn)〉
= 〈−∇ua(xa(pn)), xa(pn) − ya(pn)〉 + 〈∇ua(ya(pn)), xa(pn) − ya(pn)〉
≤ || − ∇ua(ya(pn))|| · ||ya(pn) − xa(pn)||,

namely

||xa(pn) − ya(pn)|| ≤ || − ∇ua(ya(pn))||
ν

.

Then, we have:

||xa(pn)|| ≤ ||xa(pn) − ya(pn)|| + ||ya(pn)|| ≤ || − ∇ua(ya(pn))||
ν

+ ||ya(pn)|| (19)

From the conditions (16) and (17), there exist h, k ∈ R+ such that:

|| − ∇u(ya(pn))|| ≤ h, ||ya(pn)|| ≤ k ∀n ∈ N.

So, from (19), it follows:

||xa(pn)|| ≤ h

ν
+ k, ∀n ∈ N,

where the constant h
ν
+k does not depend on n. Hence there exists a subsequence {xa(pkn }

of {xa(pn)} converging to an element ya ∈ Rl+:

lim
n→+∞ xa(pkn ) = ya .

Taking into account of the condition (M2) of the convergence in Mosco’s sense, we have
that ya ∈ Ma(p).

In virtue of the condition (M1) of the convergence in Mosco’s sense related to sets Ma(pn)

it results:

∀xa ∈ Ma(p) ∃{xa(pn)} : xa(pn) ∈ Ma(pn), lim
n→+∞ xa(pn) = xa,

and, since ua(xa) ∈ C1(Rl+), we have:

lim
n→+∞(−∇ua(xa(pn))) = −∇ua(xa).

For all n ∈ N, we consider the variational inequality:

〈−∇ua(xa(pkn )), xa(pkn ) − xa(pkn )〉l ≥ 0, ∀xa(pnk ) ∈ Ma(pkn ),
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passing to the limit as n → +∞:

〈−∇ua(xa(p)), xa(p) − ya(p)〉l ≥ 0, ∀xa(p) ∈ Ma(p);
namely, by the Minty’s Lemma, ya(p) ∈ Ma(p) is a solution to the variational inequal-

ity (9). By uniqueness of the solution to (9), we have ya(p) = x ( p). Hence it follows that
every subsequence of {xa(p)} converges to the same limit xa(p) and hence

lim
n→+∞ xa(pn) = xa(p).

Then we can conclude that the solution xa(p) to the variational inequality (9) is continuous
on P .

Finally, we can prove the existence of the solution to the quasi-variational inequality (7):

Theorem 4 Let (−∇ua(xa)) be an operator that satisfies the assumption (8). Then there
exists (p, x) ∈ P × M(p) solution to quasi variational inequality (7).

Proof Let xa be the unique solution to the variational inequality (9). Since P is a compact
and convex set and xa(p) is a continuous function, by the Theorem 2, we have the existence
of solution to the variational inequality (10). Then, the pair (p, x) ∈ P × M(p) is a solution
to the quasi variational inequality (7).
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